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Three UAVSAR projects

Slumgullion, SW Colorado (2011-): rapidly moving landslide—3D surface motion measurement (also

Delbridge et al. talk Thurs.)

San Francisco Bay area (2008-): Hayward Fault, Berkeley Hills landslides, other faults and
deformation

Salton Trough, Mexico (2012-): Postseismic deformation related to 2010 M7.2 earthquake, Cerro
Prieto geothermal field



The Slumgullion Natural
Laboratory
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The Slumgullion Natural
Laboratory

* The rapid deformation rate
allows us to observe the
deformation on the
timescale of days
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* The large spatial extent of
the slide allows to explore
complex interactions
between distinct kinematic ;
units

% The slide’s continuous
motion allows us to observe
1tsS response to
environmental forcing



Distinct Kinematic Units
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Units defined by W. Schulz (2012) based on field mapping




UAVSAR 7-Day

Interferograms
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THREE DIMENSIONAL
VECTOR INVERSION

To obtain the full vector deformation of the Landslide motion we combine the

deformation from the four LOS observations.
*The deformation vector given in terms of the basis vectors North, East, and Vertical is given by:

3

3
d=7 digi =) (d,&)é
1=1

1=1

For each LOS interferogram we observe the true deformation vector
projected on the LOS direction, and from the above EQ:

3
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THREE DIMENSIONAL
VECTOR INVERSION

THIS PROBLEM HAS NOW BEEN FORMULATED AS A CLASSICAL LEAST
SQUARES PROBLEM FOR EACH PIXEL:

—
WHERE O (4X1) IS THE VECTOR OF LOS OBSERVATIONS, AND THE COMPONENTS OF A (4X3)

ARE SIMPLY THE DIFFERENT LOS VECTORS(ROWS) PROJECTED ONTO THE CORRESPONDING
BASIS VECTOR(COLUNMNS). THUS THE DESIRED DISPLACEMENT VECTOR D IS GIVEN BY:

d= (A'Q™'A) A'Q 6

Q IS THE ESTIMATED COVARIANCE MATRIX AND IS CALCULATED FROM THE PIXEL
CORRELATION USING THE CRAMER-RAO BOUNDS DERIVED IN SEYMOR 1994.

A1 =772
Q=5 3t
4 ZNL’)/Q




Results of the Three

Dimensional Vector Inversion
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UAVSAR Velocity [cm/day]

Horizontal Motion

Comparison with concurrent campaign GPS data

Comparison of GPS and UAVSAR velocity estimates

Systematic Difference
Of 0.25 CENTIMETER/DAY

mug East Vel.
mmg North Vel.
s mmg Total Horiz.
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3D Conclusions

* In order to overcome spatial and temporal limitations of
traditional spaced-based InSAR and ground-based displacement
measurements we present a method for the characterization of
3D surface deformation using the unique capabilities of the

NASA/JPL UAVSAR airborne repeat-pass interferometry.
system.

* A comparison with GPS measurements validates this method
and shows that it provides reliable and accurate 3D surface
measurements.

* The data acquisition and processing scheme presented here can
be used to measure 3-D surface deformation of any kind with
applications to hydrology, seismology, and volcanology.



L Differential Phase Measurement @/

 The differential interferometric phase measurement 1s given by

47T - A - A
¢ = 7 [_<b7 €> + <d7 £> + Apatm} + Onoise
Topography Change Atmosphere
Term Term Term
eTopography term 1s assumed known and
removed for remainder of discussion
t, Sll?}fulateg PR eMeasurement only of surface displacement
artiacts due to along line-of-sight that can not be
differential

tropospheric delay
between two passes

vgihange
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AL

distinguished from tropospheric path delay

eTropospheric path delays cause artifacts in

repeat-pass interferometric synthetic aperture

radar (InSAR) measurements of surface

displacement

— Rapidly varying tropospheric delays (both
spatially and temporally) are most
problematic

— Such variations are primarily due to changes
in water vapor content along signal
propagation path



_JPL Three Dimensional Vector Deformation

To obtain full vector deformation measurements multiple measurements from
different line-of-sights are needed that when combined give the deformation
vector 1n the desired reference frame.

The vector displacement in terms of a specified set of basis vectors 1s given
by

Suppose we have N deformation observations, 0] <J’ g> 1=1,N along line-
of-sights g] then from the above equation

and hence the sensitivity of the i component of the deformations is

D0.; N




_JPL Three Dimensional Vector Deformation

e The set of N 1n observations can be written in matrix form as
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which is classical least squares problem with solution
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JPL Solution Covariance

 The vectors deformation accuracy 1is then
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All look vectors are
assumed to have the
same look angle

Downward View

* For the geometry above, the matrix has the form
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JPL Four Pass Combination Overlay
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JPL Four Pass Detformation Map @

Sample vector deformation products generated from UAVSAR data collected in May,
2009 over the Hofsjkull glacier.

Data from headings of 20°, -160, -40° and 140° and were combined to generate vector
deformation products.
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